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Abstract

d

dt

∫
D(t)

Lt(x; dmx) =

∫
D(t)

Ĺt(x; (dmx ∧ ∂x

∂t
) · ∇́x)

+

∮
∂D(t)

Lt(x; dm−1x ∧ ∂x

∂t
)

+

∫
D(t)

∂Lt(x; dmx)

∂t

where Lt is an arbitrary, time-indexed family of suitably differentiable,
multivector-valued differential forms, n the dimension of the containing
manifold, m ≤ n the dimension of D(t), and ∇x is the vector derivative
with respect to x.

1 Introduction

Usually the bounds of an integral are fixed with the main exception being in-
stances of the fundamental theorem of calculus. When the bounds are fixed,
differentiation and integration commute.1 In some areas, such as fluid dynamics,
varying domains of integration are more common. Reynolds’ transport theorem
is an instance of differentiation under the integral.

When differentiating an integral, let’s say with respect to “time” for con-
creteness, there are three ways the value of the integral can vary. First, the
integrand can itself simply be time-varying. Next, the boundary of the domain
of integration can be changing with respect to time: imagine a disc growing in
the plane. Finally, the whole domain of integration can be moving: imagine
that disc floating out of the plane. Each of these scenarios corresponds to a
term in the equation.

Ultimately, this paper merely states that the result from [Fla73] is also true
for multi-vector valued forms and not just scalar forms. The proof uses a similar
sort of approach as well, but the notation of the result and the proof is quite

1Given enough differentiability.
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different. So beyond situating the result in the context of geometric calculus
which subsumes exterior calculus, my hope and opinion is that the result and
the proof are much less abstruse than, at least, a typical presentation in exterior
calculus. By using geometric calculus most operations of exterior calculus have
formulas that are so simple they don’t bear naming. For example, Flanders uses
the interior product which he describes as “not widely known” [Fla73, p. 623].
It’s a simple exercise to compare his formula to the above to find out what has
become of the interior product. Similarly, geometric calculus has no need for
chains and defining vectors as differential operators and so forth.

The proof below attempts to be fairly detailed, albeit informal about some
aspects. It also is linked to an intuitive picture and I attempt to explain why
certain definitions are made and are correct.

2 Preliminaries

The main driver of the proof, unsurprisingly, will be the Fundamental Theo-
rem of Calculus, both in its general form [HS87, p. 256] and in the basic high
school form. I’m using a fairly explicit notation (compare to [Fla73]) with the
main omission being the parameter dependence of dmx(= dmx(x)). Following
Hestenes, the´accents mark which expression the vector derivative, ∇, is differ-
entiating. So in the following formula for the Fundamental Theorem of Calculus,
∇ is not differentiating dmx.∫

M
F́(x; dmx · ∇́) =

∮
∂M

F(x; dm−1x) (1)

Here F is simply a field of linear functions of (m−1)-vectors (parameterized
by x) linear in dm−1x. That is all a differential (m−1) (multi-)form is. We also
have the high school form of the fundamental theorem of calculus.

d

dt

∫ t

t0

F(τ)dτ = F(t) (2)

We’ll simplify the proof by separating out the time-varying integrand case.
With suitably differentiable functions and constant domain of integration, it’s
trivial to show that the derivative commutes with the integral:

d

dt

∫
D
Ft(x; dmx) =

d

dt

∫
D

∫ t

t0

∂Fτ (x; dmx)

∂τ
dτ

=
d

dt

∫ t

t0

∫
D

∂Fτ (x; dmx)

∂τ
dτ =

∫
D

∂Ft(x; dmx)

∂t
(3)

To handle the case with a non-constant domain, we define g(t) ≡ f(t, t) and
define f as

f(t1, t2) ≡
∫
D(t1)

Ft2(x; dmx)
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and we differentiate g with respect to t getting2

dg(t)

dt
=
df(t, t)

dt
=
∂f

∂t1
(t, t) +

∂f

∂t2
(t, t) (4)

Expanding definitions gives:

d

dt

∫
D(t)

Ft(x; dmx) =
d

dt

∫
D(t)

Fτ (x; dmx)

∣∣∣∣
τ=t

+

∫
D(t)

∂Ft(x; dmx)

∂t
(5)

where we’ve used (3) and the middle term is what we need to define.

3 Proof

The goal of the proof is to convince you that the formula is correct, and not
to validate analytic details. Functions are assumed sufficiently smooth and
generally we assume no “bad” things happen, e.g. I’m not really sure what
happens if the domain of integration becomes degenerate.

For ease of speaking, I’ll refer to the x variables and the manifold supporting
them as “spatial” and “space” to contrast with the t, τ variables that will
be referred to as “time”. The outline of the proof is to extrude the “space”
along “time” producing a “space-time” manifold, apply the general fundamental
theorem of calculus to this manifold, and then differentiate the result using the
high school fundamental theorem of calculus to get back to just the “spatial”
manifold. No physical significance is attached to these terms. In particular, no
connection to special relativity.

We define our “space-time” manifold as E(t) ≡ Στ : [t0, t].D(τ), borrowing
the dependent sum notation from type theory and where t0 is an arbitrary point.
In technical terms, this is the total space of the fiber bundle over the interval
[t0, t]. In non-technical terms, we’re just stacking D(τ) shaped slices on top of
each other for each τ in [t0, t] so that E(t) is an undulating, waving “cylinder”.
We’ll write the points in E(t) as ω ≡ (x, τ) and we have an additional tangent
vector defined as usual: eτ ≡ ∂ω

∂τ .
On to step two: applying the general fundamental theorem of calculus to

our new manifold. First we make a change of variables [HS87, pp. 267-269]:

B(ω; dmω) ≡ L(πx(ω);πx(dmω)) (6)

Note, that the dmω is just an elaborately named parameter, it could just as
well be K. πx : [t0, t] × N → N where N is the containing manifold, and
in particular πx(ω) = x. This specializes to a function E(t) → D(t) but it’s
differential (the πx) is defined for the entire tangent space not just D(t)’s. Also,
this broader function avoids concerns about the codomain depending on values
of the domain. I.e. by analogy3 to dependent types, the “tighter” projection

2Exercise: Derive the right hand side of (4). As a hint, what does the chain rule look like

for
dh(v(λ))

dλ
when v is vector-valued?

3This is more than an analogy...
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operator would have a type like Πω : E(t).D(πτ (ω)). We’ll talk more about πx
and co. later, but we won’t be concerned with L again for a while.

Applying the fundamental theorem (1) to B, we get:∫
E(t)

B́(x, τ ; dm+1ω · ∇́) =

∮
∂E(t)

B(x, τ ; dmω) (7)

∂E(t) splits into three parts, namely the “caps”, D(t0) and D(t), and the
“side of the cylinder”, S(t) ≡ Στ : [t0, t].∂D(τ). So we have,∮

∂E(t)

B(x, τ ; dmω) =

∫
D(t)

B(x, t; dmx)

−
∫
D(t0)

B(x, t0; dmx)

−
∫
S(t)

B(x, τ ; dm−1x ∧ dτ)

(8)

A little bit of magic happened here. For the integrals over D(t), the tangent
volume element dmω exactly corresponds to the tangent volume element of D(t),
i.e. dmx. For example, if we had a disc in the x-y plane and we extruded it along
the z axis to get a cylinder, the vectors tangent to that cylinder on the top or
bottom would still be vectors in the x-y plane. However, the tangent vectors
along the side of that cylinder would necessarily have a z component, and this
is exactly what we are seeing in the integral over S(t) where we make the dτ
factor explicit. But wait. Where did those two negative signs come from? While
it’s easy to intuitively see the one for D(t0), both can be explained by taking a
closer look at the general Fundamental Theorem of Calculus.

In the Fundamental Theorem of Calculus (1), we weren’t too precise about
how dmx and dm−1x on the left and right sides respectively were related to each
other. A little bit of thought reveals that if dm−1x represents the tangent space
of ∂M, i.e. every vector in it goes “along” the surface (i.e. boundary) of M,
then in general the only remaining direction to go is normal to the surface, i.e.
out of (or into) M. Already we can see where the negative sign for the D(t0)
integral came from: its normal vector points in the opposite direction of the
normal for the D(t) integral (and we arbitrarily, but consistently, choose dmx
so that the D(t) integral comes out positive). Still, the sign of the S(t) integral
may not yet be clear, so let’s choose dmx = dm−1x ∧ n where n coincides with
the normal vector at the boundary in (1).∫

M
F́(x; (dm−1x ∧ n) · ∇́) =

∮
∂M

F(x; dm−1x)

Obviously, this only works when n is actually the normal otherwise dm−1x
would necessarily have a normal component and thus certainly couldn’t be the
tangent volume element for ∂M. Now, when we recall that dm+1ω = dmx ∧ dτ ,
we can see what happened. For the integrals over D(t) (D(t0)), eτ (−eτ ) was
handily the normal and the fundamental theorem went through. For the integral
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over S(t), dm+1ω = dm−1x ∧ n ∧ dτ = −dm−1x ∧ dτ ∧ n which is the form needed
to syntactically apply the fundamental theorem of calculus. And there is our
negative sign.

After much ado about minus signs, we can continue on to the final step. We
stick (8) into (7) and rearrange slightly as we see our desired result almost there
to get:∫

D(t)

B(x, t; dmx)−
∫
D(t0)

B(x, t0; dmx)

=

∫
E(t)

B́(x, τ ; (dmx ∧ ∂ω
∂τ

) · ∇́)dτ +

∫
S(t)

B(x, τ ; dm−1x ∧ ∂ω
∂τ

)dτ (9)

where we’ve used dτ = dτeτ = dτ ∂ω∂τ and dτ = |dτ |. Differentiating the whole
thing gives:

d

dt

∫
D(t)

B(x, t; dmx) =
d

dt

∫
E(t)

B́(x, τ ; (dmx ∧ ∂ω
∂τ

) · ∇́)dτ

+
d

dt

∫
S(t)

B(x, τ ; dm−1x ∧ ∂ω
∂τ

)dτ

(10)

We finally use the general fact that∫
Στ :[t0,t].M(τ)

F(x, τ ; dmx)dτ =

∫ t

t0

∫
M(τ)

F(x, τ ; dmx)dτ (11)

and apply the high school form of the Fundamental Theorem of Calculus (2)
and expand the definition of B and we’re done

d

dt

∫
D(t)

L(x;πx(dmx)) =

∫
D(t)

Ĺ(x;πx((dmx ∧ ∂ω
∂t

) · ∇́))

+

∮
∂D(t)

L(x;πx(dm−1x ∧ ∂ω
∂t

))

(12)

...almost. We still need to get rid of the πx and turn the ∂ω
∂t into ∂x

∂t .
πx(a) is defined as the derivative of πx in the a direction. From this it’s clear

that it’s the identity on dmx. We also have πx(ω; eτ ) = ∂πx(ω)
∂τ = ∂x

∂τ which is
promising. πx is implicitly lifted to an outermorphism so we can push it through
wedge products getting almost to the final form.

d

dt

∫
D(t)

L(x; dmx) =

∫
D(t)

Ĺ(x;πx((dmx ∧ ∂ω
∂t

) · ∇́))

+

∮
∂D(t)

L(x; dm−1x ∧ ∂x
∂t

))

(13)

We can’t push πx through a dot product though. The relationship to change
of variables suggests we look at the chain rule which has a particularly elegant
form in geometric calculus [HS87, p. 168]:

∇x = f̄(∇f(x))
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f̄ is the adjoint of f , i.e. the transpose. It is characterized by the following [HS87,
p. 69] where we are using the contraction inner products from [Dor02] to avoid
side conditions.

Acf(B) = f(f̄(A)cB) (14)

f(A)bB = f(Abf̄(B)) (15)

Since a linear transformation is the adjoint of its adjoint, f̄ and f can be swapped
as well. In the above integral over D(t), the dot product we’re using can be the
right contraction, b. The chain rule says that ∇ = π̄x(∇x) and via (15), we’re
done.

d

dt

∫
D(t)

L(x; dmx) =

∫
D(t)

Ĺ(x; (dmx ∧ ∂x
∂t

) · ∇́x)

+

∮
∂D(t)

L(x; dm−1x ∧ ∂x
∂t

)

(16)

Parameterizing L by t and combining with (5) gives the desired result:

d

dt

∫
D(t)

Lt(x; dmx) =

∫
D(t)

Ĺt(x; (dmx ∧ ∂x
∂t

) · ∇́x)

+

∮
∂D(t)

Lt(x; dm−1x ∧ ∂x
∂t

)

+

∫
D(t)

∂Lt(x; dmx)

∂t

(17)
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